Floating Wind

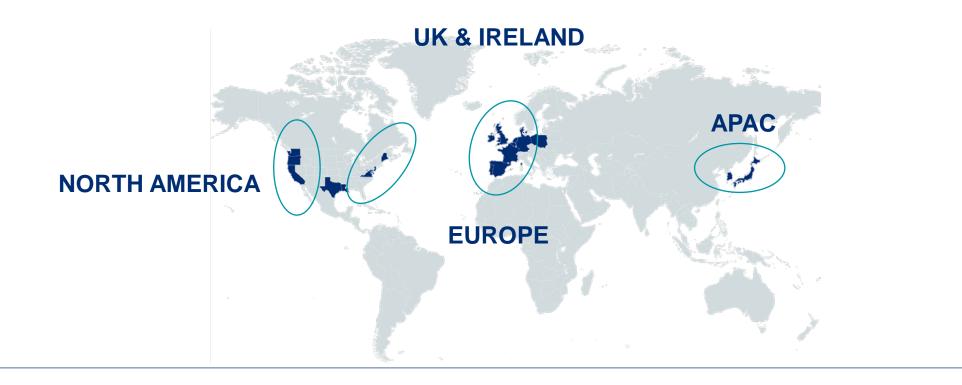
Challenges and Opportunities

11/05/2023

Summary

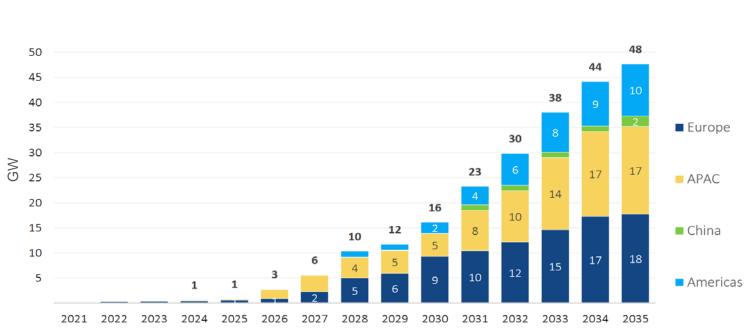
- 1. SSER Position
- 2. Why Floating Wind?
- 3. FOW Technology and Status
- 4. FOW Projects and Locations
- 5. Challenges and Opportunities
- 6. Concluding Remarks

SSER Position – Bottom-fixed

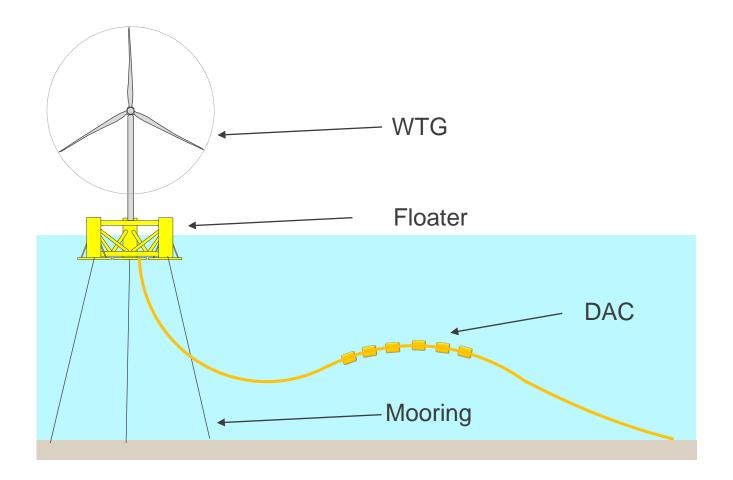

- SSER is developing offshore wind for over 15 years
- Over 1459MW of installed offshore wind capacity
- Currently own and operate >1GW of offshore wind
- >3GW in construction
- >6GW of offshore wind in development
- Largest portfolio (operational, construction & development) of UK fixed bottom offshore wind projects

SSER Position – Floating Wind

- Over 80% of potential offshore sites are in deep waters
- FOW projected to make-up 10-20% of offshore build-rate by 2030
- FOW unlocks offshore wind potential globally
- SSER has secured 3.6GW FOW pipeline
- Target >5GW pipeline by 2030/31

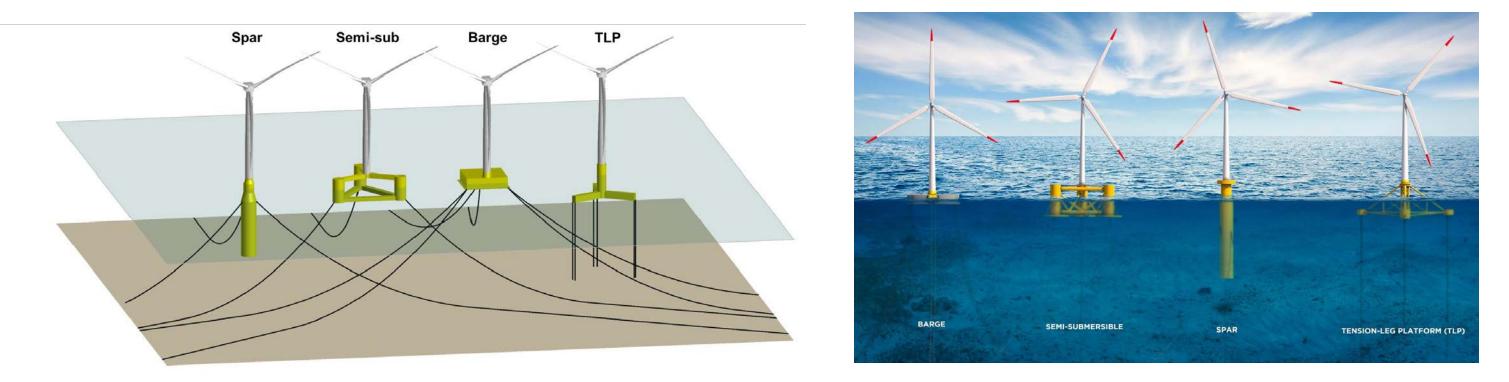


Why Floating Wind?


- Bottom-fixed wind becomes exponentially more challenging with greater depth
 - Current (2022) max depth is ~65m for bottom-fixed
- ~80% of global offshore wind resources are in locations suited for floating, with opportunity for larger capacity
- FOW enabler to decarbonisation for key regions (e.g. Japan, California) with very **limited continental shelf**
- Long term, many industry analysts believe FOW can deliver greater cost reductions than bottom fixed offshore wind

Cumulative Floating Wind Capacity Forecast

Floating Wind System



- Floating wind installations are complex systems requiring an integrated view
- Holistic approach required for the definition of:
 - Floater (Sub-structure)
 - Mooring system
 - Anchors
 - Dynamic Array Cable (DAC)
 - Transportation and Installation (T&I)
- No "one size fits all" solution several options

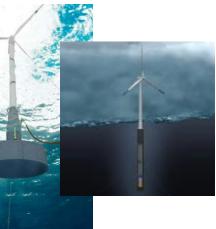
available, depending on project regs and conditions

Floating Sub-Structures

Floaters are classified into four types

- **Spar:** Simple & proven design, but restricted to deeper waters (>100-200m)
- Semi-sub: Most widely developed/adopted and flexible design (many variants), but often requiring large and heavy structure
- **Barge:** Geometrically simple design but prone to poor dynamic and sea-keeping performance
- **TLP**: Alternative design with superior dynamic performance but lower maturity and complex design considerations

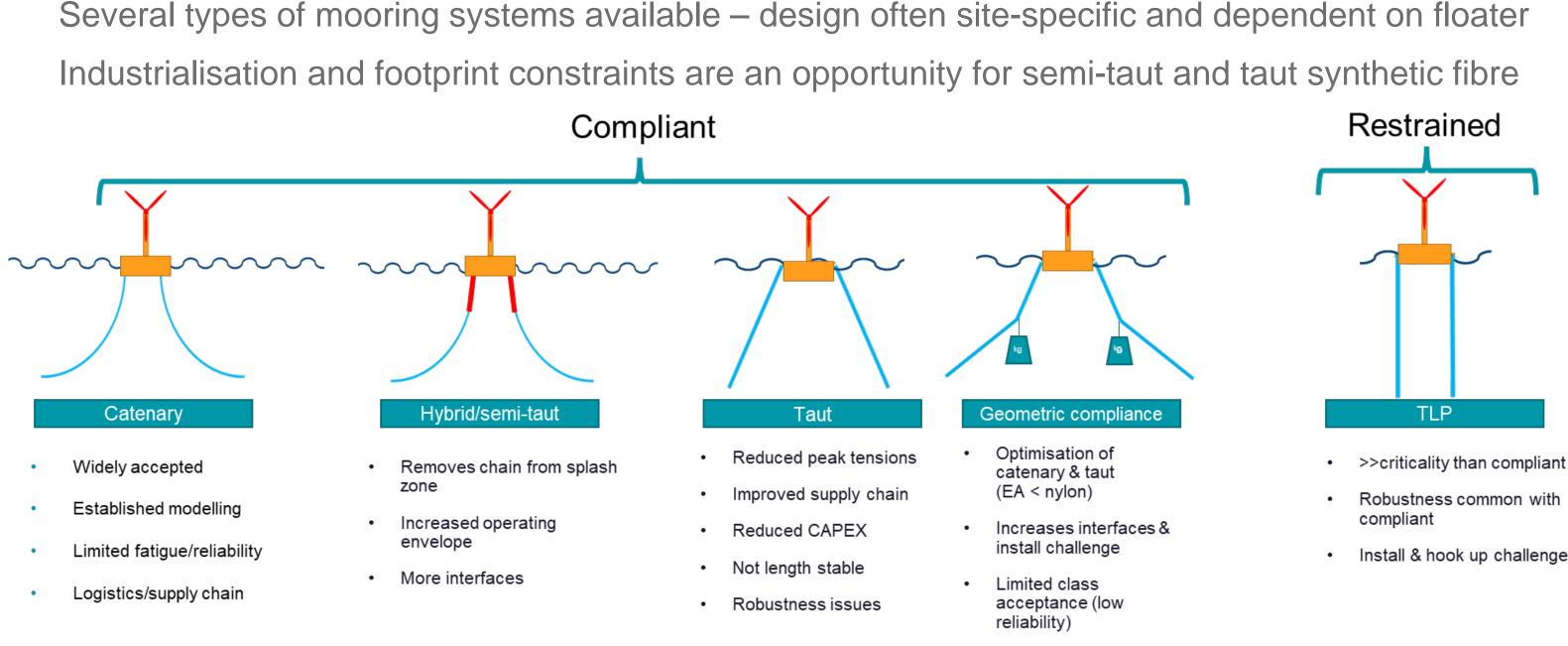
Floating Sub-Structures


Over 40 different foundation designs commercially available Potential selection considerations:

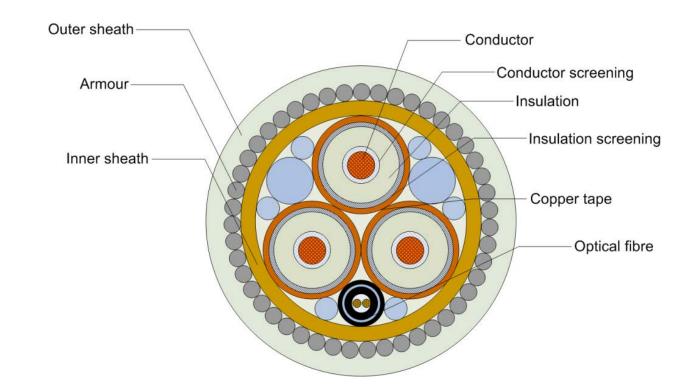
- Floater type (Spar, Semi, Barge, TLP ...)
- Material (steel, concrete)
- Dimensions (e.g. draft for port?)
- Footprint
- Qualification and TRL (Technology Readiness Level)
- Fabrication and Logistics
- T&I
- Access and O&M

Spar

Semi-sub



Mooring Systems



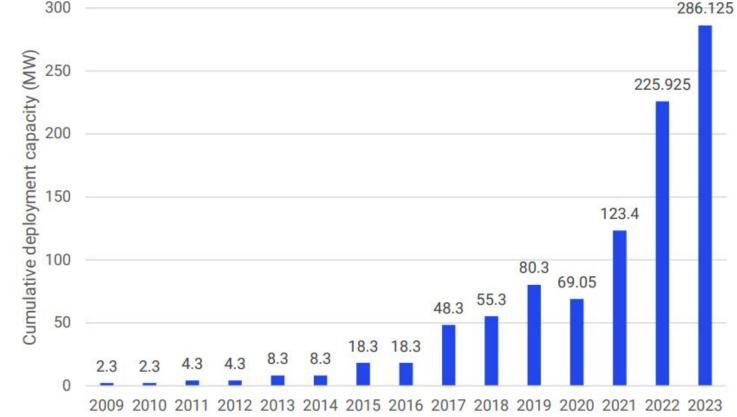
Install & hook up challenge

Cabling and Connection

- Range of cable suppliers but dynamic cables may require bespoke development for HV
- Inter-Array Cables subject to significant motions with fatigue issues
- Ancillary components for cable layout (buoyancy elements, stiffeners etc.)
- Subsea connectors for dynamic applications still novel developments

Construction, Transportation and Installation

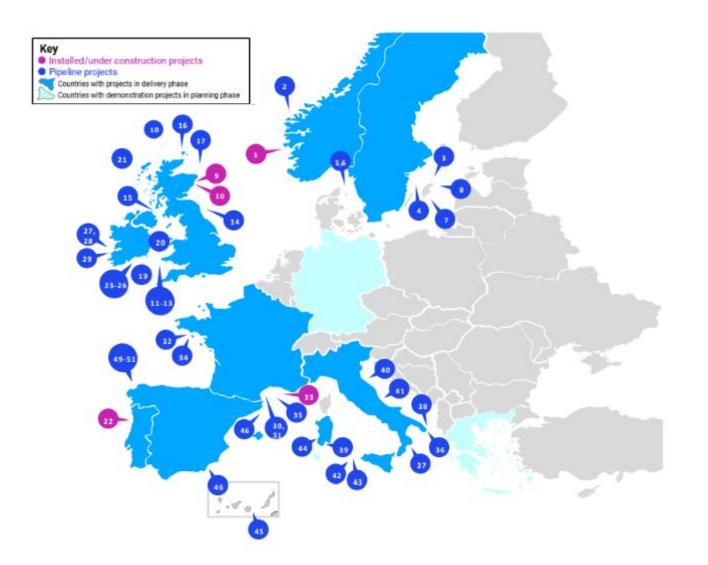
- Scaling up the manufacturing is a significant challenge for industrialisation
- Limited facilities can allow WTG integration
- Wet tow vs. dry tow options
- Full-scale farms may require appropriate logistic considerations (e.g. wet storage)



FOW Projects and Locations

Three steps in path to commercialisation:

- 1. <u>Proof of Concept Phase</u> (2009 2016), Prototypes ranging from 2MW to 7MW
- Pre-commercial Phase (2017 2025), Arrays of multiple turbines with installed capacity between 12MW and 50MW
- **3.** <u>Utility-scale Floating Arrays</u> (2026 and beyond), Large-scale wind farms of >400MW


The floating wind industry is still at pre-commercial stage with several concepts undergoing demonstration in real sea

Global cumulative floating offshore wind capacity, according to 4C Offshore database, 2022

FOW Projects and Locations

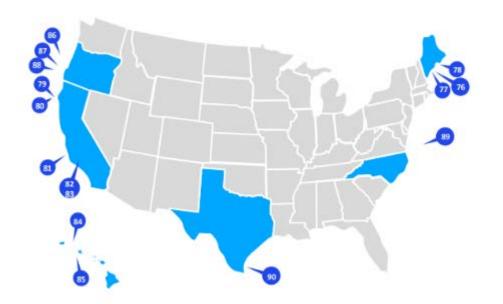
Project MW		Project
Norway		
1. Hywind Tampen	88	23. Emerald
2. Frøyabanken	500-1500	24. Inis Ealga
Sweden		25. Blackwater
3. Dyning	2000	26. SSE Celtic Sea
4. Kultje	2150	27. Clarus
5. Mareld	2300	28. Western Star
6. Poseidon Nord	1000	29. Moneypoint
7. Skidbladner	2000	France – fl
8. Herkules	2750	30. EOLMed
United Kingdom – floating target 5 GV	V by 2030 *	31. Gulf du Lion
9. Hywind pilot park	30	32. Groix & BelleÎl
10. Kincardine	50	33. Provence Grand
11. Erebus (commercial)	600	34. Triskéol
12. Petroc	300	35. Méditerranée I-
13. Celtic Deep	398	Italy – flo
14. Blyth	58.4	36. Odra Energia
15. North Channel Wind	400	37. Minervia Energi
16. Dolphyn project	2000	38. KailiaEnergia
17. Green Volt	480	39. Nora Energia
18. Cerulean North Sea	3000	40. Marche
19. Crown Estate Test & Demonstration	400	41. Abruzzi
20. Celtic Sea Floating	4000	42. MedWind
21. Scotwind	15,000	43. Marsala
Portugal		44. Sardegna Sud C
22. WindFloat Atlantic	25	

2

* Taken from Carbon Trust Joint Industry Project -Phase4 report - July 2022

MW			
Ireland			
1300			
1000			
1500			
800			
1000			
1350			
1000 - 1500			
floating target 3 GW by 2030 **			
30			
30			
28.5			
25.2			
250			
1500			
oating target 5 GW by 2040 **			
1500			
675			
1200			
1395			
840			
1760			
2800			
750			
504			

Project M	W	
Spain – floating target of 1-3 GW by 2030 *		
45. Canarray I & II	180	
46. Mar de Agata	300	
47. Parque Tramuntana I	500	
49. Parque Nordes I	525	
50. San Brandan	490	
51. San Cibrao	490	


* target government set ** target set by industry

FOW Projects and Locations

Project	MW	
Japan		
52. Sakiyama	2	
53. IDEOL Kitakyshu demo	3	
54. Goto City	17	
55. Sakura	520	
56. Kyushu	1000	
57. Kishuu	450	
58. Toki I & II	1100	
59. Progression Energy Floating	800	
60. Goto Sakiyama Oki Oki	500	
61. Seihoku-ouki	600	
Taiwan		
62. Eolfi Taiwan	500-2000	
63. Chu Tin I & II	1300	
64. Huan Ya	1400	
65. Laifeng	950	
66. Hai Shuo	1350	
China		
67. CTGNE Yangjiang Shapa	5.5	
68. Longyuan Nanri Island	4	
69. Qingdao	2000	
South Korea		
70. Ulsan Prototype	5	
71. Donghae Sites	500 - 4500	
72. Firefly	804	
73. Munmu Baram	420-1500	
74. Ulsan Floating	1000-2500	
75. Incheon	1600	

* Taken from Carbon Trust Joint Industry Project – Phase4 report - July 2022

Project	MW	
Maine		
76. Aqua Ventus	12	
77. Maine Research Array	144	
78. Future Floating *	450 - 1500	
California		
79. Redwood	150	
80. Humboldt WEA *	1600	
81. Morro Bay *	700-1000	
82. Lompoc/CADEMO	60	
83. Castle Wind *	1000	
Hawaii		
84. Oahu Northwest *	400	
85. Oahu South *	400	
Oregon		
86. Coos Bay *	10,000	
87. Bandon *	2,800	
88. Brookings *	3,400	
North Carolina		
89. Central Atlantic E *	1000	
Texas		
90. Gulf of Mexico *	2000	

Challenge

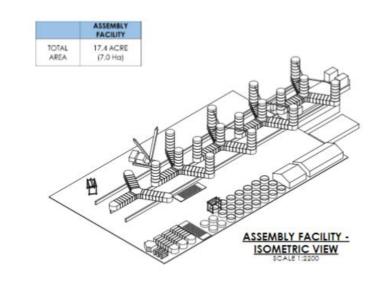
- Sub-structure Capital Cost
 - Variety of sub-structure concepts
 - Limited technological proof
 - WTG integration still uncertain

Opportunity

- Potential for cost reduction
 - Room for disrupting innovations

Demo projects to establish processes • Interface with OEM for bespoke design

Challenge


- Industrialisation for large-scale arrays
 - Limited supply chain for construction
 - Slow assembly rates for existing yards
 - Limited capability of existing ports

Opportunity

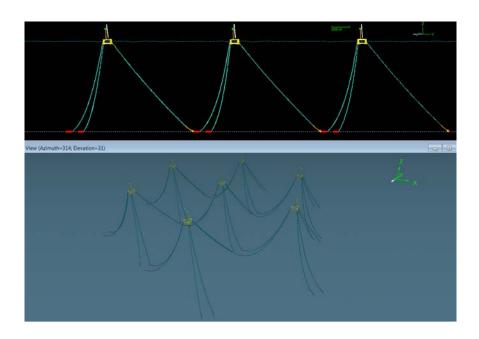
- Development and Scaling-up

 - joints)

• Consider local capabilities (e.g. concrete) • Optimise fabrication processes (novel

Build / expand dedicated facilities

Challenge


- Moorings qualification and supply
 - Limited supply for offshore chains
 - Sensitivity to high loads and fatigue
 - Complex and expensive anchors

Opportunity

- Development and Scaling-up

 - Shared anchor arrangement

• Adopt novel synthetic rope (e.g. nylon) Innovative load reduction systems

Challenge

- Stream-lined T&I
 - Floater constrains on T&I options
 - Installation rate weather-sensitive
 - Limitation of vessels and equipment

- Bespoke T&I procedures
 - Improve floater design
 - Include wet storage options
 - Fortify installation vessel supply

Concluding Remarks

- Floating wind represent an immense opportunity (80% of the global offshore wind resources suited to floating technologies)
- Floating wind installations are complex systems with many components, requiring an integrated view of the wind turbine, sub-structure, moorings, anchors, dynamic cable as well as consideration of construction, assembly, transportation, installation and operation phases
- Although significant experience has been cemented over the past decade, there is still a large variability of concepts and technologies and it is likely that different solutions may be feasible depending on project location and conditions
- Floating offshore wind projects are expected to reach utility-scale by 2026, after full completion of the ongoing demonstration projects
- Larger offshore wind turbines have led the way for lower cost in offshore wind, however opportunities for cost reduction exist in floating wind by addressing the challenges of substructure design consolidation, industrialisation of the fabrication process, moorings component supply chain, and development of suitable T&I procedures and tools

