

Bacton Hydrogen Project

Bacton Hydrogen Project Overview

"Bacton is a strategic gas processing hub in the UK and is ideally positioned to become a significant Hydrogen production site to support meaningful decarbonisation of London, the South East and beyond by 2030"

Executive Summary – Bacton Energy Hub Final Report

Joint Development Agreement, May 2023

- SEEL Summit Energy Evolution Limited
- PEL Progressive Energy Limited

Joint Development Objectives:

- Transition the Bacton hydrogen concept into a deliverable project
- Establish the value proposition of a hydrogen production facility in the Bacton area
- Deliver enhanced technical and commercial definition
- De-risk key areas of the development
- Deliver outputs to inform commercial gateway decisions to progress the project to the next stage
- Support a potential Track 2 submission for the wider Regional decarbonisation cluster

Bacton Hydrogen Project Collaboration

SEEL – Summit Energy Evolution Limited

A wholly owned subsidiary of Sumitomo Corp. focusing on full value chain energy projects targeting decarbonisation and low carbon/net zero solutions.

Sumitomo Corp. hydrogen and ammonia portfolio overview

Progressive Energy Limited

"A clean-energy project development company"

Exists to develop and deliver low carbon energy projects at a scale to make a material reduction in carbon emissions as we fight against climate change. Conceived "HyNet" in 2016.

1998 - 2008	2008 - 2016	2016-2020	2020 – 2023+
Vision:	Vision:	Vision:	Vision:
NG CCGT	Waste-to- chemicals	Waste-to- chemicals	Waste-to- chemicals
Coal IGCC	Coal IGCC	NG	"Blue" Hydrogen for
Oil IGCC	TCCS	+CCS	industry
		Industrial CCS	Industrial H2 combustion
		mixtures	Industrial CCS
			NG/H2 mixtures
			"Green"
			Hydrogen

UK Hydrogen Strategy

- Carbon Budget 6:
 - 250 460TWh hydrogen production
 - ~ 20 35% UK final energy consumption
- Ambition for 10GW low carbon hydrogen production by 2030 (50% electrolytic).
- Hydrogen Economy 2020s Roadmap, outlines the expectation for the hydrogen economy by the mid 2030s

Bacton Hydrogen Project Rationale

Key Strategic Drivers Establish a sustainable hydrogen ecosystem, building on Bacton's role as a key regional Energy Hub, transitioning it to a low carbon future.

Contributing the regional growth, through supply chain and employment development Note, as identified in Bacton Energy Hub, Final Report

- To design, build and operate facilities that are:
 - safe and reliable
 - have minimal emissions and environmental impact
 - respect all stakeholders associated with the project
 - Demand led capacity
- Optimised project to deliver attractive economics
- Timely delivery, choregraphed with development of CCS infrastructure, consumers work programmes, and fulfils market requirements
- Scalable (circa 400MW 1GW) to help meet the energy transition needs for hydrogen production in the South and East of England and to facilitate the transition to electrolytic hydrogen production
- Supports key initiatives such as Capital Hydrogen, Hydrogen Valley, Project Union

Key Project Factors

Why Bacton?

- Opportunity to be quickly established providing a significant contribution to UK Government Targets.
- Access to large gas demand, with very little demand side build out.
- Access to upstream feedstock.
- Opportunity to abate meaningful amounts of CO2 in early 2030s.
- It is recognised that speed of action is critical to achieve Paris aligned carbon reduction pathways.

Extracted from Bacton Energy Hub Final Report

Gas Network Hydrogen Transition Initiatives

Bacton hydrogen can play a key role in enabling these initiatives.

SNS Development; CCS, OWF

- Access to immediate gas feedstock for CCS enabled low carbon Hydrogen
- Access to OWF power for future Electrolytic Hydrogen
- Existing offshore infrastructure for CCS
- Existing offshore infrastructure for potential hydrogen storage
- Access to gas connections (South East & London)
- Potential export market (Interconnectors)

Preliminary Project Schedule (Short Term)

Project Schedule (Long Term)

- Multiple vectors are required to deliver reliable low carbon energy to users
- The benefit of hydrogen versus other vectors is its potential for large scale and long term storage
- The development of short-term CCS enabled low carbon hydrogen drives the establishment of significant onshore and offshore infrastructure
- Driving the transition to electrolytic low carbon hydrogen

Thank you

